Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Rev. méd. Urug ; 36(4): 204-233, dic. 2020. graf
Article in Spanish | LILACS, BNUY | ID: biblio-1144758

ABSTRACT

Resumen: En esta revisión se resume el rol específico que el exceso de consumo de fructosa más allá de sus calorías puede tener en el desarrollo del síndrome metabólico, la esteatosis hepática no alcohólica y su asociación con la obesidad. Se desglosan los efectos de la fructosa (en comparación con la glucosa) en la esteatosis hepática, lo que genera la insulino-resistencia y la hipertrigliceridemia. Por su metabolismo hepático mayoritario y la falta de regulación, los flujos altos de fructosa consumen ATP generando ácido úrico, producen metabolitos tóxicos, como ceramidas y metilglioxal, y activan la síntesis de lípidos. Además, se analizan los efectos en el tejido adiposo, la activación del cortisol y las hormonas involucradas en el control de la saciedad, todas las cuales se ven afectadas por el consumo de fructosa. La insulino-resistencia hepática inicial se complica con insulino-resistencia sistémica, que genera leptino-resistencia y un ciclo de hiperfagia. Estos resultados subrayan la necesidad de intervenciones clínicas y educativas dentro de la población para regular o reducir el consumo de fructosa, especialmente en niños y adolescentes, sus principales consumidores.


Summary: This review summarizes the specific role that excess fructose consumption (beyond its calories) may have in the development of MetS, NAFLD and its association with obesity. The effects of fructose (compared to glucose) on hepatic steatosis are discussed as well as their consequence: insulin resistance and hypertriglyceridemia. Unlike glucose, more than 80% ingested fructose stays in the liver, and due to lack of fine metabolic regulation, high fructose flows consume ATP generating uric acid, produce toxic metabolites such as ceramides and methylglyoxal and activate lipid synthesis. In addition, the study analyzes the effects of fructose on adipose tissue, cortisol activation and hormones involved in satiety control, all of which are affected by fructose consumption. The initial hepatic insulin resistance is complicated by systemic insulin resistance, which generates leptin resistance and a hyperphagia cycle. These results underscore the need for clinical and educational interventions within the population to regulate / reduce fructose consumption, especially in children and adolescents, their main consumers.


Resumo: No momento vivemos uma pandemia causada pelo vírus SARS-CoV-2, COVID-19, sendo o mais recomendado ficar em casa para reduzir o contágio e que este seja reduzido ao mínimo possível. No século 21, a tecnologia está mais presente do que nunca e faz parte do nosso dia a dia. Tendo em vista que há significativo abuso da mesma, principalmente por adolescentes, na nossa perspectiva que promove o movimento e a redução do comportamento sedentário, propomos o uso de videogames ativos em substituição aos videogames convencionais. Para isso, fizemos uma revisão dos principais benefícios que estas podem trazer, tanto para a população mais jovem como para os idosos. Esta última faixa etária é uma das mais afetadas pela pandemia e, portanto, há uma forte recomendação para que fiquem em casa. No entanto, é recomendável usá-lo com responsabilidade e não investir tempo excessivo que possa causar danos.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Fructose
2.
Acta Pharmaceutica Sinica ; (12): 189-194, 2020.
Article in Chinese | WPRIM | ID: wpr-789032

ABSTRACT

Hepatic selective insulin resistance refers to that insulin fails to suppress hepatic glucose production but continues to promote hepatic lipogenesis in insulin resistance. Therefore, type 2 diabetes mellitus is characterized with dyslipidemia apart from hyperglycemia. This review highlights the roles and molecular mechanisms of the key hepatic lipogenesis factors such as sterol regulatory factor binding protein 1c (SREBP1c), mammalian rapamycin target complex 1 (mTORC1), endoplasmic reticulum stress (ER stress), FoxO1, lipid synthesis substrate, etc.

3.
Acta sci., Biol. sci ; 36(2): 223-229, abr.- jun. 2014. tab, ilus
Article in English | LILACS | ID: biblio-849064

ABSTRACT

Dehydroespiandrosterone (DHEA) is associated with improvements in chronic degenerative diseases, including obesity, insulin resistance, and cardiovascular diseases. Nevertheless, it is observed an increase in its concentration in individuals with liver lipid infiltration, but it is not precise if this condition emerges as a cause or a consequence. In this way, we aimed to identify gene expression alterations in lipid and glucose liver metabolism markers, as well as oxidative stress markers. For this purpose, male Wistar rats, 12-14 months old were treated with subcutaneous injections of DHEA (only dose of 10 mg kg-1); and after 7 days, hepatic gene expression by PCR real time were performed for the following genes: G6Pase, PEPCK, FAS, PPARγ, malic enzyme, ChREBP, LXR, catalase, GPx, iNOS, NADPH oxidase subunits and PCNA. We observed a tendency of reduction in G6Pase gene expression in treated group (p = 0.08). In addition, it was identified an increase in liver PPARγ and FAS gene expressions, two markers of increased activity of lipogenic pathway. We also observed an increase in iNOS gene expression, a known inductor of systemic and hepatic insulin resistance. In conclusion, our data indicates that the treatment with DHEA can be associated with the development of liver lipid infiltration and hepatic insulin resistance.


A deidroepiandrosterona (DHEA) encontra-se associada a melhorias em quadros de obesidade, resistência à insulina e doenças cardiovasculares. Porém, observa-se um aumento na sua concentração em indivíduos portadores de infiltração lipídica hepática, mas sem saber precisar se o mesmo surge como causa ou consequência. Assim, objetivamos identificar alterações na expressão gênica hepática de marcadores relacionados ao metabolismo lipídico e glicídico e de estresse oxidativo. Para tanto, ratos machos com 12-14 meses de idade foram tratados com injeção subcutânea de DHEA (dose única 10 mg kg-1), e após 7 dias foram feitas análises da expressão gênica hepática por PCR em tempo real das seguintes proteínas: G6Pase, PEPCK, FAS, PPARγ, enzima málica, ChREBP, LXR, catalase, GPx, iNOS, subunidades da NADPHoxidase e PCNA. Observamos uma tendência à redução da expressão gênica da G6Pase no grupo tratado (p = 0,08). Também identificamos um aumento na expressão gênica hepática do PPARγ e FAS, dois indicadores de aumento da atividade das vias de lipogênese. Observamos um aumento na expressão gênica da iNOS, um conhecido agente indutor de resistência insulina sistêmica e hepática. Em conclusão, nossos dados indicam que o tratamento com DHEA pode estar associado com o desenvolvimento de um quadro de infiltração lipídica hepática e resistência à insulina hepática.


Subject(s)
Dehydroepiandrosterone , Fatty Liver , Lipogenesis
4.
Clinical and Molecular Hepatology ; : 210-215, 2013.
Article in English | WPRIM | ID: wpr-202393

ABSTRACT

Liver plays a central role in the biogenesis of major metabolites including glucose, fatty acids, and cholesterol. Increased incidence of obesity in the modern society promotes insulin resistance in the peripheral tissues in humans, and could cause severe metabolic disorders by inducing accumulation of lipid in the liver, resulting in the progression of non-alcoholic fatty liver disease (NAFLD). NAFLD, which is characterized by increased fat depots in the liver, could precede more severe diseases such as non-alcoholic steatohepatitis (NASH), cirrhosis, and in some cases hepatocellular carcinoma. Accumulation of lipid in the liver can be traced by increased uptake of free fatty acids into the liver, impaired fatty acid beta oxidation, or the increased incidence of de novo lipogenesis. In this review, I would like to focus on the roles of individual pathways that contribute to the hepatic steatosis as a precursor for the NAFLD.


Subject(s)
Humans , Acetyl Coenzyme A/metabolism , Fatty Acids/metabolism , Fatty Liver/metabolism , Lipogenesis , Mitochondria/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL